跳转至

第一章证明(1.1-1.2)

在教材第一章中,有些定理留作习题,没有给出证明。我们将这些定理进行汇总,并给出证明。

引理1.3

引理1.3

关于 G\ddot{o}del编码有下述性质:

  1. \text{ep}_i(\langle x_0,\cdots,x_n\rangle)=\begin{cases}x_i,&若0\leq i\leq n, \\ 0, &否则;\end{cases}
  2. \langle x_0, \cdots, x_n\rangle = \langle y_0,\cdots, y_n\rangle当且仅当 \forall i\leq n. x_i=y_i
  3. \langle x_0, \cdots, x_n,0,\cdots,0\rangle = \langle x_0, \cdots, x_n\rangle;
  4. \langle x_0, \cdots, x_m\rangle=\langle y_0, \cdots, y_n\ranglex_m\cdot y_n\not=0,则 m=n\forall i\leq n.x_i=y_i.

证:

(1)

根据 G\ddot{o}del编码定义,

$$ \langle x_0,\cdots,x_n\rangle=\prod^n_{i=0}[P^{x_i}_i] $$ 其中 P_i表示第i个素数。故 x_i=\text{ep}_i(\langle x_0,\cdots,x_n\rangle).

(2)

\langle x_0, \cdots, x_n\rangle = \langle y_0,\cdots, y_n\rangle,故

\prod^n_{i=0}[P^{x_i}_i]=\prod^n_{i=0}[P^{y_i}_i]

\forall i\leq n. x_i=y_i.

(3)

\begin{align} \langle x_0, \cdots, x_n,0,\cdots,0\rangle =&(\prod^n_{i=0}[P^{x_i}_i])*(\prod^m_{i=n+1}[P^0_i]) \\\\ =&(\prod^n_{i=0}[P^{x_i}_i])*(\prod^m_{i=n+1}1) \\\\ =&\prod^n_{i=0}[P^{x_i}_i] \\\\ =&\langle x_0, \cdots, x_n\rangle \end{align}

(4)

反设结论不成立,故 m\not=n\exists i\leq n,x_i\not=y_i

m\not=n,由 x_m\cdot y_n\not=0,必有 \langle x_0, \cdots, x_m\rangle\not=\langle y_0, \cdots, y_n\rangle.

\exists i\leq n,x_i\not=y_i,必有 \langle x_0, \cdots, x_m\rangle\not=\langle y_0, \cdots, y_n\rangle.

矛盾。

引理1.4

引理1.4

令: $$ \begin{align} \text{pg}(x,y) &=\langle x,y\rangle = 2^x\times 3^y, \\ K(z) & = \text{ep}_0(z),\\ L(z) & = \text{ep}_1(z), \end{align} $$ 其中 \langle x,y\rangle为定义1.11中的G\ddot{o}del编码,则\{\text{pg},K,L\}为配对函数组。

证:

对任意 x,y\in\mathbb{N},有

K(\text{pg}(x,y))=\text{ep}_0(2^x\times 3^y)=x \\\\ L(\text{pg}(x,y))=\text{ep}_1(2^x\times 3^y)=y

故结论成立。

引理1.5

引理1.5

令: $$ \begin{align} \text{pg}(x,y) &= 2^x(2y+1), \\ K(z) & = \text{ep}_0(z),\\ L(z) & = \left\lfloor \frac{z}{2^{\text{ep}_0(z)+1}}\right\rfloor , \end{align} $$ 则\{\text{pg},K,L\}为配对函数组。

证:

对任意 x,y\in\mathbb{N},有

K(\text{pg}(x,y))=\text{ep}_0(2^x(2y+1))=x
\begin{align} L(\text{pg}(x,y)) &=\left\lfloor \frac{2^x(2y+1)}{2^{\text{ep}_0(2^x(2y+1))+1}}\right\rfloor \\\\ &=\left\lfloor \frac{2^x(2y+1)}{2^{x+1}}\right\rfloor \\\\ &=\left\lfloor y+\frac{1}{2}\right\rfloor \\\\ &=y \end{align}

故结论成立。

引理1.8

引理1.8

n\in\mathbb{N},令: $$ \begin{align} J_n(x_0,\cdots,x_n)&=\langle x_0,\cdots, x_n\rangle, \\ \pi_i(z) & = \text{ep}_i(z), 0\leq i\leq n, \end{align} $$ 其中 \langle x_0,\cdots,x_n\rangle为定义1.11中的G\ddot{o}del编码,则\{J_n,\pi_0,\cdots,\pi_n\}为多元配对函数组。

证:

对任意 i\leq nx_0,\cdots,x_n\in\mathbb{N},有

\pi_i(\langle x_0,\cdots, x_n\rangle)=\text{ep}_i(\prod^{n}_{i=0}[P_i^{x_i}])=x_i

故结论成立。

引理1.9

引理1.9

\{\text{pg},K,L\}为任意配对函数组。对于任意 n\in\mathbb{N},令: $$ \begin{align} J_n(x_0,\cdots,x_n)&=\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_n), \\ \pi_0(z) & = K^n(z), \\ \pi_i(z) & = L(K^{n-i}(z)), 1\leq i\leq n, \end{align} $$ 则\{J_n,\pi_0,\cdots,\pi_n\}为多元配对函数组。

证:

i=0 时,

\begin{align} \pi_0(J_n(x_0,\cdots,x_n))&=K^n(\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_n)) \\\\ &=K^{n-1}(\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_{n-1})) \\\\ &\cdots \\\\ &=K(\text{pg}(x_0,x_1)) \\\\ &=x_0 \end{align}

i\geq 1时,

\begin{align} \pi_i(J_n(x_0,\cdots,x_n))&=L(K^{n-i}(\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_n))) \\\\ &=L(K^{n-i-1}(\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_{n-1}))) \\\\ &\cdots \\\\ &=L(\text{pg}(\cdots \text{pg}(\text{pg}(x_0,x_1),x_2)\cdots,x_i)) \\\\ &=x_i \end{align}

故结论成立。

引理1.15

引理1.15

\mathcal{EF}对有界\max-算子是封闭。

证:

由于\mathcal{EF}对于有界\mu-算子封闭,而\max x\leq n. [f(x,\overrightarrow{y})]=n\dot- \min x \leq n. [f(n\dot-x,\overrightarrow{y})]。故\mathcal{EF}对有界\max-算子封闭。