跳转至

第一章证明(1.3)

引理1.16

引理1.16

下述二元数论谓词是初等数论谓词:

  1. \text{eq}(x,y)\equiv x=y;
  2. \text{neq}(x,y)\equiv x\not=y;
  3. \text{lt}(x,y)\equiv x<y;
  4. \text{leq}(x,y)\equiv x\leq y;
  5. \text{gt}(x,y)\equiv x>y;
  6. \text{geq}(x,y)\equiv x\geq y;

证:

(1)

特征函数为 f(x,y)=\begin{cases}0,x=y\,,\\ 1, x\not=y\,.\end{cases}

f(x,y)=N^2(x\ddot-y)

(2)

特征函数为 f(x,y)=\begin{cases}0,x\not=y\,,\\ 1, x=y\,.\end{cases}

f(x,y)=N(x\ddot-y)

(3)

特征函数为 f(x,y)=\begin{cases}0,x<y\,,\\ 1, x\geq y\,.\end{cases}

f(x,y)=N(y\dot-x)

(4)

特征函数为 f(x,y)=\begin{cases}0,x\leq y\,,\\ 1, x> y\,.\end{cases}

f(x,y)=N^2(x\dot-y)

(5)

特征函数为 f(x,y)=\begin{cases}0,x> y\,,\\ 1, x\leq y\,.\end{cases}

f(x,y)=N(x\dot-y)

(6)

特征函数为 f(x,y)=\begin{cases}0,x\geq y\,,\\ 1, x< y\,.\end{cases}

f(x,y)=N^2(y\dot-x)

引理1.17

引理1.17

n 元数论函数 f,g:\mathbb{N}^n\rightarrow \mathbb{N} 是初等数论函数,则下述 n 元数论谓词是初等数论谓词:

  1. \text{eq}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})=g(\overrightarrow{x});
  2. \text{neq}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})\not=g(\overrightarrow{x});
  3. \text{lt}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})<g(\overrightarrow{x});
  4. \text{leq}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})\leq g(\overrightarrow{x});
  5. \text{gt}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})>g(\overrightarrow{x});
  6. \text{geq}_{f,g}(\overrightarrow{x})\equiv f(\overrightarrow{x})\geq g(\overrightarrow{x});

证:

(1)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})=g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})\not=g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N^2(f(\overrightarrow{x})\ddot-g(\overrightarrow{x}))

(2)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})\not=g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})=g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N(f(\overrightarrow{x})\ddot-g(\overrightarrow{x}))

(3)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})<g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})\geq g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N(g(\overrightarrow{x})\dot-f(\overrightarrow{x}))

(4)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})\leq g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})> g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N^2(f(\overrightarrow{x})\dot-g(\overrightarrow{x}))

(5)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})> g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})\leq g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N(f(\overrightarrow{x})\dot-g(\overrightarrow{x}))

(6)

特征函数为 F(\overrightarrow{x})=\begin{cases}0,f(\overrightarrow{x})\geq g(\overrightarrow{x})\,,\\ 1, f(\overrightarrow{x})< g(\overrightarrow{x})\,.\end{cases}

F(\overrightarrow{x})=N^2(g(\overrightarrow{x})\dot-f(\overrightarrow{x}))

引理1.18

引理1.18

初等数论谓词对于 \neg,\wedge,\vee,\rightarrow,\forall x\leq n.[\cdot],\exists y\leq n.[\cdot]封闭。

证:

\neg xN(x)

x\wedge yN^2(x+y)

x\vee yx\cdot y

x\rightarrow y\neg x \vee y=N(x)\cdot y

\forall x\leq n.[\cdot]N(\prod_{i=0}^nN[\cdot])

\exists y\leq n.[\cdot]\prod_{i=0}^n[\cdot]

引理1.22

引理1.22

初等数论集合对于 \cup,\cap,-封闭。

证:

设初等数论集合 S_1,S_2\subseteq\mathbb{N}^n,其特征函数分别为 \chi_{S_1},\chi_{S_2}

\chi_{S_1\cup S_2}=\chi_{S_1}\cdot \chi_{S_2} \\ \chi_{S_1\cap S_2}=N^2(\chi_{S_1}+ \chi_{S_2}) \\ \chi_{S_1- S_2}=N^2(\chi_{S_1}+ (1\ddot-\chi_{S_2}))

引理1.33

引理1.33

定义1.22中的函数 $G 具有以下性质:

  1. G(k,x)kx 皆严格递增;
  2. (x+1)G(k,x)<G(k+2,x);
  3. (G(k,x))^{x+1}<G(k+3,x)

证:

(1)

对任意 k_1<k_2,有

\frac{G(k_2,x)}{G(k_1,x)}=\frac{\underbrace{2^{\cdot^{\cdot^{\cdot^{2^x}}}}}_{k_2个2}}{ \underbrace{2^{\cdot^{\cdot^{\cdot^{2^x}}}}}_{k_1个2}} >1

对任意 x_1<x_2,有

\frac{G(k,x_2)}{G(k,x_1)}=\frac{\underbrace{2^{\cdot^{\cdot^{\cdot^{2^{x_2}}}}}}_{k个2}}{ \underbrace{2^{\cdot^{\cdot^{\cdot^{2^{x_1}}}}}}_{k个2}} >1

(2)

k 进行数学归纳。

k=0时,

\frac{G(k+2,x)}{(x+1)G(k,x)}=\frac{2^{2^x}}{(x+1)x}>1

假设 k=t时成立,即

G(t+2,x)>(x+1)G(t,x)

k=t+1时,有

\begin{align} \frac{G(t+3,x)}{(x+1)G(t+1,x)} &=\frac{G(t+2,2^x)}{(x+1)G(t,2^x)} \\\\ &>\frac{(2^x+1)G(t,2^x)}{(x+1)G(t,2^x)} \\\\ &=\frac{2^x+1}{x+1} \\\\ &>1 \end{align}

(3)

k 进行数学归纳。

k=0时,

\frac{G(k+3,x)}{G(k,x)^{x+1}}=\frac{2^{2^{2^x}}}{x^{x+1}}

x 作归纳,易证 \frac{2^{2^{2^x}}}{x^{x+1}}>1

假设 k=t时成立,即

G(t+3,x)>(G(t,x))^{x+1}

k=t+1时,有

\begin{align} \frac{G(t+4,x)}{G(t+1,x)^{x+1}} &=\frac{G(t+3,2^x)}{G(t,2^x)^{x+1}} \\\\ &>\frac{G(t,2^x)^{2^x+1}}{G(t,2^x)^{x+1}} \\\\ &>\frac{G(t,2^x)^{x+1}}{G(t,2^x)^{x+1}} \\\\ &=1 \end{align}